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Abstract— Roll lock-in is a persistent high angle of attack, 

nonlinear coning motion sometimes observed in the flight of 

reentry vehicles and sounding rockets.  For example, it has 

occurred during Aerobee sounding rocket and Sidewinder 

missile flights prior to the introduction of rollerons.  This paper 

focuses on how fin design effects the probability of lock-in.  The 

high angle of attack response is driven by misalignment and/or 

offset thrust and drag forces, amplified by during pitch-roll 

resonance.  High angles of attack engender nonlinear roll 

moments which cause the roll rate to follow the pitch natural 

frequency.  It is well known that such roll moments can arise 

when the center of mass is offset from the vehicle symmetry axis.  

However, this paper explores another source of nonlinear high 

angle of attack roll moments, interaction between vorticity shed 

from a fore body and tail fins.  Both kinds of roll moment have 

similar magnitudes.  However, lock-in due to center of mass 

offset is, apart from static margin, not affected by fin design.   

The location and strength of the shed vortex pair are found 

from wind tunnel data.  Roll moments are estimated from strip 

theory assuming incompressible cross flow.  Conditions for 

steady state roll lock-in, and its probability of occurrence, are 

derived from the rigid body moment equations.  A technique for 

significantly reducing the probability of roll lock-in by adjusting 

the fin exposed semispan and static margin is presented, and 

used to show that, for a typical university sounding rocket, static 

margins larger than the classical two caliber heuristic rule can 

mitigate this problem.  Fin taper ratio was studied, and found to 

have a relatively minor effect.  Little difference between three 

and four fins was found.  But, more than four fins, at fixed static 

margin, can significantly reduce the incidence of roll lock-in.  Six 

fins are much better than four, and eight are better still. 
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I. INTRODUCTION  

Roll lock-in, or catastrophic yaw, is the most challenging, 
non-linear phenomenon in the field of sounding rocket 
dynamics.  There are several causes for this phenomenon:  
First, poor design leads to configurational asymmetries.  
Second, lateral offset of the center of mass relative to the 
symmetry axis leads to both pitch/yaw perturbing torques, and 
to nonlinear roll moments.  Finally, the interaction of fore body 
vortices and tail fins causes nonlinear, high angle of attack roll 
moments.  Since only the last is significantly relevant to fin 
design, it is the only one studied here.  Note, however, that the 
first two have generally valid remedial design prescriptions, e. 
g., roll balancing. 

Experience has shown that sounding rocket roll lock-in 
usually begins in powered flight at the time of yaw-roll 
resonance when a rocket's pitch/yaw natural frequency equals 
its roll rate

1
.  During resonance the angle of attack response to 

body-fixed perturbations is significantly amplified.  Re-entry 
vehicles are similarly afflicted during yaw-roll resonance

2
. 

Then nonlinear roll moments will compel the roll rate to follow 
the yaw natural frequency indefinitely.  Such locked-in motion 
is said to be lunar with one side of the rocket always facing the 
cone axis.  The consequence is a prolonged period of excessive 
drag with severe adverse effects on the mission.  The body-
fixed perturbations driving all this are random.  Therefore, for a 
given rocket flying a given mission, the occurrence of roll 
lock-in is also random. 

In the past, most studies of roll lock-in have focused on 
nonlinear transient phenomena

1,4
.  But, some previous studies

3,4
 

have shown that catastrophic yaw is a continuing (quasi-steady 
state) process.  Two significant aerodynamic nonlinearities, 
Magnus moment and vortex-induced roll moment, are 
important.  Our approach is to first estimate the steady state 
coning rate from the yaw moment equation, and, using the 
pitch moment equation, the fin panel size to ensure the desired 
(input) vehicle static margin is attained.  Next, the minimum 
angle of attack for which steady state lunar roll lock-in is 
possible is found from the roll moment equation.  The 
probability of no roll lock-in is the objective function for 
optimizing fin design, and is estimated from known body-fixed 
perturbations

15,16 
. 
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II. NOTATION 

Mnemonic_________Definition________________________ 

a  Distance from a vortex core to a point on a fin, 

b  Exposed semispan of a fin, 

DC  Fin airfoil drag coefficient for a section normal 

to the leading edge, 

DC  
2

2




 DC

, 

MC  Pitching moment coefficient slope, 

NC  Normal force coefficient of the entire vehicle, 

NC  Fin span-average airfoil normal force 

coefficient slope without any body 
interference, 

FNC   Fin assembly normal force coefficient slope, 

NNC   Nose normal force coefficient slope, 

LC  Roll moment coefficient qSdLCL  , 

LC  Single fin roll moment coefficient due to fin 

cant, 

LiC  Amplitude of the vortex-induced roll moment 

coefficient, 

LpC  Roll moment coefficient due to fin damping in 

roll, 

VLC  Nonlinear roll moment due to interaction 

between nose vorticity and tail fins, 

LOC  Nonlinear roll moment coefficient due to CG 

offset, 

NpC  Yawing moment coefficient due to roll rate, 

NpC  Yawing moment coefficient due to roll rate and 

angle of attack, 

NrC  Yawing moment coefficient due to yaw rate, 

YC  Magnus side force coefficient per unit length 

based on cross flow velocity, 

)( yc  Local fin chord at spanwise station y, 

Rc  Root chord, 

Tc  Tip chord, 

d  Aerodynamic reference length R2 , 

if  Integral functions, 

g  Indefinite integral in the roll moment induced 

by a single fin by a single vortex, 

PI  Pitch/yaw moment of inertia, 

L  Rocket overall length, 

Tl  Distance from the nozzle to the rocket center of 

mass, 

M  Free stream Mach number, 

N  Number of fin panels, 

Pr  Probability on no roll lock-in, 

rqp ,,  Roll, pitch and yaw rates, 

q  Dynamic pressure, 

R  Body radius, 

r  Distance from the body centerline to the core 
of a free vortex, 

S  Aerodynamic reference area 2R  

SM  Pitch/yaw static margin, 

s  Distance from the body centerline to the core 

of an image vortex, 

T  Thrust force, 

U  Free stream velocity, 

v  Tangential velocity around a vortex, 

Nv  Velocity normal to a fin panel, 

x  Distance aft of the nose tip, 

CGx  Distance from the nose tip to the Center of 

Gravity, 

CPFx  Distance from the nose tip to the fin assembly 

center of pressure, 

CPNx  Distance from the nose tip to the nose center of 

pressure, 

Sx  Distance aft of the nose tip where vortex 

separation occurs, 

y  Distance from the body centerline to a point on 

a fin, 

Vy  Lateral distance from the body centerline to a 

free vortex core, 

Vz  Vertical distance from the body centerline to a 

free vortex core, 

  Body angle of attack, 

*  Minimum angle of attack for which lock-in can 

occur, 
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local  Local angle of attack at a point on a fin, 

  Dimensionless exposed semispan  Rb / , 

  Fin cant angle, 

T  Single plane thrust misalignment angle, 

  Body roll angle, 

V  Roll angle attitude of a free vortex, 

  Circulation around a free vortex, 

  Fin sweep back angle, between root chord and 
leading edge, 

  Fin taper ratio RT cc / , 

  Coning rate, 

n  Pitch/yaw natural frequency, and 

  Single plane center of mass offset, 

( )o Value of ( ) at low angle of attack. 

III. VORTEX PAIR DESCRIPTION 

It will probably come as no surprise to the reader to find 
that there is an extensive literature on the vortex wakes in the 
lee of slender bodies of revolution

5,6,7
.  These will provide what 

we need to know. 

Our chosen point of departure is the longitudinal location 

Sx  where the vortex pair separates from the body.  While this 

is difficult to accurately determine experimentally, it would 
appear that the separation point approximately corresponds to 
the location where the zero   static pressure on the body is a 

minimum.  Aft of this point, the longitudinal pressure gradient 
is adverse, i.e., pressure increasing as x  increases.  This is a 

strong argument for locating the vortex separation point there.  
In Fig. 1 the definitions are: 

Dimensionless Distance Aft of Separation 
R

xx S )( 
  

Dimensionless Vortex Strength 
RU2


  

Using these definitions, the empirical data in Fig. 1 can be 
well represented by 

 

52.1
)(

08.06.0
2 







 




R

xx

RU

S 


  (1) 

 

Figure 1 - Free Vortex Strength 

The approximate lateral location Vy  of a vortex core is 

 7.0
R

yV  (2) 

 

Figure 2 - Vertical Location of a Free Vortex 

The wind tunnel data
6
 for the vertical location of a free 

vortex is shown in Fig. 2. 

Here, Dimensionless Vertical Location  
R

zV 1
 . 

The data displayed above cover the angle of attack range 
from 10

o
 to 30

o
, and extend aft from the body nose tip about 10 

body diameters.  The dashed line in Fig. 2 is a rough fit to the 
data that could be used in other analyses.  Its equation is 

 
R

xx

R

z SV )(
21.01


  (3)  

The image vortex is collinear with the centerline and the 
external vortex, but with opposite sign.  It can be shown

8
 that if 
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 2Rrs   (4)  

the boundary condition on the cylinder surface is satisfied 
everywhere. 

IV. ANALYSIS OF VORTEX-INDUCED ROLL MOMENT 

First, consider the effects of vorticity shed from the fore 
body at high angles of attack.  In the Reynolds no. range 
commonly encountered with sounding rockets at resonance a 
pair of vortices are shed into the leeward wake over the 
forebody.  The vortex pair is initially symmetric about the 
angle of attack plane.  As the leeward wake moves aft, the 
vortex pair grows stronger from additional vorticity shed from 
the body.  In the neighborhood of the tail fins the vortex pair, 
and their image vortices induces a roll moment. 

Figure 3 shows the important features of this problem.  The 
solid dots represent the cores of the shed free vortices.  The 
open dots represent the cores of the image vortices, located at a 
distance s  from the centerline

8
.  Each free-image vortex pair 

will satisfy the boundary condition of no flow through the 
cylindrical body surface.  As described above the location and 

strength of the shed vortex pair ),( vr   must be found from 

wind tunnel experiment.   

The fundamental assumption beneath the induced roll 
moment calculation is the idea of incompressible cross flow.  
That is, the flow in the cross flow plane may be considered 
incompressible so long as the overall hypersonic similarity 
parameter H  is small compared to unity:  

 1)sin(12  MH  (5) 

Since for roll lock-in the angle of attack is often less than 

about 0.2 radians, this implies the flight Mach number 5M , 

or so.  Equation (5) is automatically satisfied for subsonic free 
stream Mach numbers. 

 

Figure 3 - Roll Geometry Looking Forward  

The flow around an isolated vortex follows circular 

streamlines centered on the vortex
8
.  The tangential velocity v  

at a radial distance a  from the vortex core to a point on a fin is 

 
a

v



2


  (6) 

 

Figure 4 - Vortex and Fin in the Cross Flow Plane 

The sign convention used here is to view the rocket from its 

nose tip.  A positive   and v  follow the fingers of the right 

hand when the thumb points out of the paper.  A positive roll 
moment also follows this right hand rule. 

 Now, look at Fig. 4, and consider the interaction 
between the fin at top dead center and the free vortex at ~2 
o’clock.  The distance between the vortex core and a point on 
the fin, a , is 

 )cos(222   Vyrrya  (7) 

Next, the angle   between the tangential velocity and the 

normal to the fin panel is 

 )
2

(cos
222

1

ay

rya 
   (8) 

Then, the vortex-induced velocity normal to the fin panel is 

 cosvvN  , or 

 
))cos(2(2

))cos((
22 








V

V
N

yrry

ry
v , (9) 

Assuming a fin planform with straight taper, the local chord 
is given by 

 yCCyc 21)(  , where (10) 

RRTR cc
b

R
c

b

R
c

b

R
cC 11 )1)((1)())(1( 








   

 and (11) 

RR
TR cc

b
c

b

cc
C 22

1









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With this the rolling moment due to a fin strip in the 
presence of an isolated vortex is 

 

 

dy
yrryU

ry
CyCCqy

U

v
dyCyqycMomentInducedd

V

V
N

N
N

))cos(2(2

))cos((
)(

)(

2221














  

 dy
ryry

ryCyyC

U

qC

V

VN

))cos(2(

))cos()((

2 22

2

2

1











 , or  

 

 

.
))cos((

)cos(

)cos(2

1

2

,

2

3

21

2

1

22

dy
CyrCCy

ryC

ryryU

qC

VortexOneFinOneMomentInduced

V

V

Rb

R V

N




























 (12) 

To provide a useful result, this must be coded in a computer 
program.  To this end define some functions: 

 

))cot(
)sin(

(tan
)sin(

1

)cos(2

1

220


















V

VV

V

r

y

r

ryry

dy
f

 (13) 

 

0

22

221

)cos())cos(2log(
2

1

)cos(2

frryry

ryry

ydy
f

VV

V








 

 (14) 

 

0

2

22

22

2

2

))(2cos(

))cos(2log()cos(

)cos(2

fr

ryryry

ryry

dyy
f

V

VV

V












 

 (15) 

and 

 

0

322

22
2

22

3

3

))(3cos())cos(2log(

)
2

1
)(cos2()cos(2

2

)cos(2

frryry

ryr
y

ryry

dyy
f

VV

VV

V












 

 (16) 

We can now write the vortex-induced roll moment for one 
fin in the presence of one vortex in the form 

 ),,,,,(
2

21 


 yrCCg
U

qC
V

N 
  (17) 

with the function g  given by 

 
32221

11

))cos((

)cos(

fCfrCC

frCg

V

V








 (18) 

The variable appears explicitly in eq. (17) because has not 
yet been evaluated at the limits of integration.  The vortex-
induced roll moment for a single fin is 

 

 
 
 
 































vorteximagequadrantSecondg

vortexfreequadrantSecondg

vorteximagequadrantFirstg

vortexfreequadrantFirstg

U

qCN




2
  

Here g  is the definite integral form of the indefinite 

integrals given by eq. (18). 
































),,,,,(),,,,,(

),,,,,(),,,,,(

),,,,,(),,,,,(

),,,,,(),,,,,(

2

2121

2121

2121

2121












RsCCgRbsCCg

RrCCgRbrCCg

RsCCgRbsCCg

RrCCgRbrCCg

U

qC

VV

VV

Vv

VV

N (19) 

The signs in the various terms of eq. (19) arise from 
integration limits and the signs of the various vortices. 

The roll moment contribution from the second fin panel 
takes exactly the same form except that the roll angle argument 

  is increased to N/2  .  The roll angle argument for each 

successive fin panel is increased by N/2 . The moment from 

each of N panels takes two function evaluations to implement 
the integration limits times four for the four vortices.  For a 
four-finned configuration, 32 g  function evaluations are 

needed for each roll angle. 

 Right-left symmetry is important.  Assuming an 
airfoil normal force coefficient slope of 4 / radian, Fig. 6 below 
shows the induced roll moment coefficient for a four-finned 
rocket at various angles of attack as found by the methods of 
this paper.  Note that for small angles of attack, the phasing can 
change by 180

o
.  Figure 6 clearly shows the sinusoidal 

character of a typical induced moment curve.  It follows that 
the induced moment can be represented well by a simple sine 
wave whose amplitude can be approximated by a single 

calculation at a roll angle of about N2/ .  The maximum 

amplitude of LiC  over the entire roll angle range is shown as 

solid curve in Fig. 7. 

V. LOCKED-IN LUNAR MOTION 

Next, consider the steady state lunar coning motion of a 
rocket in roll lock-in.  In lunar coning motion one side of the 

rocket always faces the spin rate vector 


 as shown in Fig. 5: 

A further description of this motion is:  The rocket is assumed 
to be both slender and to have pitch-yaw symmetry.  It follows 
that the roll moment of inertia can always be neglected when it 
appears in combination with the pitch or yaw moment of 
inertia. 

The forcing function for this motion is assumed to be a 
combination of thrust misalignment and lateral C.G. offset 
acting in the pitch plane.  Its palliation, mass balancing, is 
known to be easy and effective.   

Because the motion is assumed to be steady state, the angle 
of attack   is assumed to be constant.  In other words, the 
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rocket is in a "flat or lunar spin" with one side always facing 
inward.   

Then the steady state roll (x-axis) and yaw (z-axis) rates 
are: 

 cosp   

 and (20) 

 sinr   

 

Figure 5 - Lunar Locked In Motion 

In body-fixed axes the three equilibrium moment 
equations

8
 are 

 0),(
cos

2 3 







 


  LiFLLpRoll CNC

U

R
CqRM  (21) 

and, assuming thrusting flight, 

   cossin)(2 23

PTTMPitch IlTaCqRM    (22) 

The perturbations driving this motion, T  and  , are 

random.  Some estimates on them can be found in ref's.  (15) 
and (16).  The static pitching moment in eq. (22) above should 
be treated with respect.  At sufficiently high angle of attack the 
fins are susceptible to stalling if the Mach number is subsonic. 

Now, the derivative NpC  appearing in the third )( YawM  of 

these equations is tricky.  If evaluated at zero   it will be 

found to vanish.  But, if evaluated at a non-zero   it can have 

significant dynamic effects.  It's basically a Magnus torque.  

That's because NpC  is really NpC  as shown in the Appendix.  

Thus, 

 
U

R
C

U

R
C NpNp




coscos
  (23) 

Then, the yaw moment equation becomes 

 




 

cossin

cossin
2

2

3

P

NpNrYaw

I

U

R
C

U

R
CqRM













 (24) 

These three equations have three unknowns, a ,   and  .  

Combining the second and third gives: 

 













U

R
C

U

R
CqR

lTCqR

NpNr

TTM










cossin
2

)(2

3

3

  

Assuming the trim angle of attack is small lets us 
estimate : 

 

  












U

R
CCCqR

lT

NrNpM

TT








32

)(
  

Solve the third equation for   under the same conditions: 

  


 NpNr

p

CC
UI

qR


42
 (25) 

Note as always the period P  of the motion is 


2
P . 

Combining eq's. (24) and (25) results in: 

 



















2

2

5
3 )(

2
2

)(









NpNr

p

M

TT

CC
IU

qR
CqR

lT
 (26) 

Equation (26) is important because it can be used to 
estimate the probability of not exceeding  .  Due to roll 

symmetry, the pitch axis in this analysis is defined by the 
direction of the vector sum of the two transverse components 
of the perturbing torque.  If the statistics of both transverse 
components have the same Gaussian distribution, then   has a 

Rayleigh distribution.  Let 

 

)var()var()var(

,

)(
2

2

)var(
)var(

2

2

2

2

5
622

2





















TTTT

NpNr

p

M

TT

ll

where

CC
IU

qR
CRq

lT










(27) 

Then, the probability of exceeding   is 

 






 


)var(
exp1Pr

2




 (28) 

Next, to find the maximum   for which no lock-in is 

possible, return to the roll equilibrium condition, eq. (21): 

 0),(
cos









 


 LiFLLp CNC

U

R
C   
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Now, at low angle of attack (just prior to entering the 
resonant condition), 

 
U

pR
CNC LpFL    

The roll rate just before resonance is just the pitch natural 
frequency.  Then 

 

P

M

LpFL

P

M

n

I

CR
CNC

and
I

CqR
p












5

3

,
2







  

With this, the roll equilibrium equation becomes 

 0),(
2 *

5














 
 


 

Li

P

MLp
C

I

CqR
R

U

C
 (29) 

Equations (28) and (29) are the key to our problem.  At 

small angles of attack, the LiC  term is too small to satisfy 

eq.(29) for any roll angle.  That is, no steady state locked-in 

solution is possible.  The smallest angle of attack *  for which 

a steady state locked-in solution exists is given implicitly by 

 )(
2 *

5




 

MAXLi

P

MLp
C

I

CqR
R

U

C














 
  (30) 

where )( *LiMAXC  is the maximum value of LiC  obtained by 

finding , at a fixed angle of attack, that roll angle   which 

maximizes/minimizes LiC .  Since the induced roll moment 

oscillates between positive and negative maximum values, 
equation (30) should be interpreted to mean, for a lock-in 

solution to exist, that the LiC  term has a sign opposite to that 

of the LpC  term.  In effect, eq. (30) defines a necessary and 

sufficient condition for roll lock-in to occur.  Unless it is 
satisfied, roll lock-in cannot happen, even though the 
perturbing torque is very large.  But, if it is satisfied, then it's 
only a matter of statistics as shown in eq. (28).  

VI. EXAMPLE 

As an example of this process, consider the following set of 
parameters: 

sec/10000 inU   2lb/in4q   inL 122  

lbW 60  in17XCG   227734 inslIP   

inb 6  in3R ad  2  

3.0  alSM c33.3  in20SM  

rad/2C nN   rad/4C aN   inX S 36  

inCPF 108X   in39XCPN   4N  

First, estimate the vortex-induced roll moment as a function 
of roll angle and plot it in Fig. 6 below: 

 

Figure 6 - Vortex-Induced Roll Moment for Various 
Angles of Attack 

Figure 6 shows the induced roll moment vs. roll angle at 
angles of attack = 0.05, 0.1, 0.12 and 0.15 radians for the 
example vehicle.  First, note that the roll moment vs. roll angle 
curve goes through a 180° phase change from a small angle 

attack regime )6(   to different regime at larger angles of 

attack.  As   increases beyond this transition, the amplitude 

of the induced roll moment increases to very large values.  This 
is caused by the changing position of the fin tips relative to the 
shed vortex pair.  This pattern is generally observed for many 
different fin geometries and flight conditions. 

Next, consider how this leads to roll lock-in.  Begin by 

finding the maximum value of LiC  as a function of angle of 

attack.  This is shown as the solid line hill-valley-mountain 
curve in Fig. 7 below.  When the number of fins is increased 
to, say 6, the single humped shape (think dromedary) shown in 
Fig. 7 often changes to a two humped (think Bactrian camel) 
form.  If lock-in were to occur it would first manifest itself at 
these relative maximum  ’s because at other roll angles (same 

 ) the necessary induced roll moment would not be as large.  

The horizontal line in Fig. 7 corresponds to possible roll lock-
in conditions.  In regions with a thin, solid horizontal line roll 

lock-in cannot occur (not enough LiC ), but where the heavy 

dashed line appears, steady state roll lock-in can happen. 

During the run up to pitch-roll resonance the angle of attack 
starts small and increases as resonance is approached.  Lock-in 
will then be observed where the vertical dot-dashed line 
labeled   intersects the other two curves. 

 



8 

 

 

Figure 7 – Typical Conditions for Roll Lock-in 

Figure 7 above sketches the approach to solving eq. (30) 

with the horizontal line representing the LpC  term.  To this 

varying amounts of LiC  are added with more as the angle of 

attack is increased.  Lock-in first becomes possible when the 

maximum LiC  is just tangent to the horizontal line.  Thus, 

eq.(30) implicitly defines the minimum angle of attack for 

lock-in.  Now, since the first )( LpC  term in eq. (30) does not 

depend on roll angle, the boundary between no roll lock-in and 

just possible roll lock-in is that LiC  be stationary with respect 

to roll angle, and that it be large enough to just balance the 

LpC  term.  Thus, at any specified angle of attack, there is a 

maximum / minimum for LiC .  This can be found using 

numerical methods from the induced roll moment data like that 
plotted in Fig. 6 above. 

Now add in the remainder of eq. (30) as depicted in Fig. 7.  

The left hand side, the LpC  term, appears as a horizontal 

straight line.  Those parts of this straight line shown as heavy 
dashed lines are regions where roll lock-in is possible, that is, 
where eq. (30) is satisfied.  Equation (26) establishes a pitch 
perturbing torque needed for the lowest angle of attack for roll 
lock-in shown by the vertical line in Fig. 7.  Thus, no roll lock-
in is possible in the region to the left of this vertical line.  
Given this, eq. (28) can be used to estimate the probability that 
no roll lock-in can occur. 

VII. IMPLICATIONS FOR FIN DESIGN 

Begin by observing that there is no guaranteed fin design 
that will always prevent roll lock-in.  It is always possible to 
have very large misalignment torques that, no matter how 
statistically rare, will cause roll lock-in.  But, it is possible to 
design fins that have a very low probability of lock-in.  Figure 
7 shows that if we can move the horizontal line high enough to 
clear the “hill” lock-in will be deferred to very high, and 
uncommon, angles of attack. 

Once we have a model of vortex-induced roll moment and 
how it influences roll lock-in, it is appropriate to consider what 
can be done to mitigate steady state roll lock-in.  The obvious 
first thing is to carefully roll-balance and align the structure to 
minimize the pitch / yaw perturbing torques.  This has been 
known for a very long time. 

So the next step in our mitigation strategy is to try to hold 

the left hand side of eq. (30) above the LiC  hump(s) occurring 

low angle of attack.  In achieving this goal, static margin is 
more important than generally realized.  There is a long 
tradition of designing for two calibers (body diameters) of 
static margin.  But Fig. 8 shows that, apart from the perturbing 
torque statistics, more than two calibers can extend the region 
where lock-in is dynamically impossible. 

The left hand side of eq. (30) depends significantly on 
flight condition, more specifically dynamic pressure as shown 
in Fig. 9 below.  Larger dynamic pressure acts like larger static 
margin by reducing angle of attack.  It is expected that the 
smaller dynamic pressures at higher altitude will exacerbate 
any lock-in tendencies. 

 

Figure 8 - Typical Effects of Varying Static Margin 
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Figure 9 - Effect of Dynamic Pressure on the First 

)( LpC Term in Eq. 30) 

The remaining choices involve manipulating fin geometry.  
Fin design usually is one of the last steps in vehicle design.  
The Fin Designer considers most of the key system parameters 
identified in the example as givens.  His free variables are fin 

size (Static Margin), number of fin panels )(N  and fin shape 

(  and ) .  The simplest approach is to manipulate the 

appearance of Fig. 7 by varying ,, NSM  and   to move the 

horizontal line above the camel's hump(s). 

By far the most important fin parameter for mitigating lock-
in is the number of fin panels, N .  Most sounding rockets have 

flown with 4 fins with a small minority using only 3 fins, and 
almost none with 5 or more.  Our model shows that there is 
very little difference between 3 and 4 fins when attempting 
implementation of the first part of our strategy.  Small tweaks 

in taper ratio   or exposed fin span   can bring about very 

similar performance in these two cases.  But, increasing the 
number of fins to 5 or more leads to dramatic improvements.  
Our model shows that with 6 fins major improvement is 
relatively easy, and it becomes trivially easy with 8.  Note that 
mortar bombs are commonly flown with 8 fin panels. 

Assuming the same baseline for all fin counts, results are 
shown in Fig’s. 10, 11, 12 and 13 for 3, 4, 6 and 8 fin panels. 

 

Figure 10 - CL of 3 fins for Various Angles of Attack 

 

Figure 11 - CL of 4 fins for Various Angles of Attack 

 

Figure 12 - CL of 6 fins for Various Angles of Attack 

 

Figure 13 - CL of 8 fins for Various Angles of Attack 
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The effect of increasing the number of fins beyond 4 
dramatically, improves resistance to roll lock-in. 

VIII. RECOMMENDATION 

To improve resistance to roll lock-in, consider using static 
margins greater than two calibers and more than four fins.   
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APPENDIX I: STABILITY DERIVATIVES 

Strip theory
9
 considers a fin panel to have only two 

dimensions; that is, it’s a pure airfoil.   However, use of a 2D 
airfoil lift curve slope can give highly erroneous results so the 
reader is advised to use the 3D lift curve slope averaged over 
the exposed fin area.  Now, consider Fig. 14 below.  The local 

angle of attack local  on an airfoil strip is 

 
N

inRlocal UyyR
1

2 /))/(1(   (31) 

where the second term in   is the inverse square upwash 

around a cylinder
8
.  The third term is the fin cant angle, the 

fourth is due to roll damping and the last is the sum of the 

in ’s induced by the four vortices. 

 

Figure 14 - Airfoil Sketch 

Before analyzing the roll moments, take a break and recall 
that while we are trying to design fins to minimize nonlinear 
roll behavior, any resulting design must have the necessary 
static margin.  This implies that the constraint takes the form of 
eq. (33) below

10
, 

   )1()(
2

2

y

R
dyycqCSlopeForceNormalFind N    (32) 

The last term accounts for body-fin upwash interference
8
.  

Integrating across the exposed fin span gives the single panel 
result, 
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For a complete symmetric fin configuration )3( N  it can 

be shown
10

 that the 

 
 

  

  



























RRbRc

RbRbRc

bRbcbc

R

Nc
CC

SlopetCoefficienForceNormalAssemblyFinTotal

R
NFN

/log

/

2/2

2
2

2

2

1

2

21

2


(33) 

Keep in mind that the tail fins are the most important 
contributor to vehicle static margin.   The static margin, and 
hence the fin assembly normal force slope, result from 
requirements unconnected to roll lock-in.  Therefore eq’s. (33) 
and (37) acts as a constraint on the allowable changes in fin 

geometry.  To apply it, select RbCN ,,  and  .  Solve for Rc . 

Then, the roll driving and damping moments of a single fin 
panel

9
 are  
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The stability derivatives needed for the lunar coning 
version of roll lock-in are estimated above. 

A. MC  

A simple estimate on the static margin is 

 CG

FNNN

FNCPFNNCPN
CGCP x

CC

CxCx
xxSM 








   

the static pitching moment derivative is then 

 FNCPFNNCPNFNNNCGM CxCxCCxdC   )(  (36) 

Finally, the required fin assembly normal force coefficient 
slope is 

 
CGCPF

CGCPN
NNFN

xxSM

xxSM
CC




   (37) 

This is used in eq. (33). 

B. NrC  

The yaw moment due to roll rate can be estimated for a 
single fin panel using the strip theory methods of ref. (10).  
First, the definition of the yaw moment coefficient: 

 
qSR

N
CN    

Its derivative with respect to UpR 2  is defined as NpC . 

Now, decompose the body into a sequence of elements, 

each of which has a normal force coefficient slope Nc .  If an 

element were located a distance iCGi xxx   from the 

center of mass, then 

 
2)(2

R

x
cC i

iNNr


    (38) 

where the summation extends over all body elements 
including those with fins. 

C. NpC  

The yaw moment due to rolling and angle of attack is tricky 
because it requires estimation of the Magnus force on the body.  
Reference (13) provides an experimental estimate of the 
Magnus side force acting on a uniform spinning cylinder: 

 0YC  when 5.0
sin


U

Rp
 (39) 

Since this condition is abundantly satisfied for the current 

problem )05.0
sin

( 
U

Rp
, the body contribution to Magnus 

moment can be neglected.  But, the data
8,12,13,14

 show that there 
is a significant nonlinearity near zero roll rate.  Once the 
condition in eq. (39) is exceeded, the side force increases more 

or less linearly with 
sinU

Rp
. 

The fin contribution can be found with the aid of Fig. 15 
below.  Consider a strip of fin of span dy  viewed from the left.  

While the basic, non-rolling angle of attack is still  cos  

there is a additional local angle of attack due to roll rate: 

 



cosU

py
p    

If we define lift L  and drag D  the usual way, normal to 
and parallel the relative velocity vector, the x -force X  acting 

on the chordwise strip for small   is: 

 dDdL
U

py
dX  )cos(    

 

Figure 15 - Rolling Fin Geometry 
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The yawing moment contributed by the strip is 

 ))cos((cos dDdLydN plocal     

Next, recall that body upwash adds to the local lift 

distribution, and that  NL CC  .  Then, 

 ycdy

C
U

py

y

R
C

U

py

y

R

qdN

DN 

























)cos)1((

)cos)1((

cos

2

2

2

2









  

Converting to coefficient form, and noting that a 
symmetrical airfoil drag has a parabolic relationship with local 
angle of attack, 

 



 22

2

2

0 sin
2

1
local

D
DD

C
CC 


  

 

ycdy
U

py

y

R

C
C

R
dC D

NN

2

2

2

2

2

2

3

)cos)1((

)sin(
2

cos
















  

Retaining only those terms contributing to NpC , results in 
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The single panel stability derivative is found after 

integrating from R  to Rb , and differentiating: 
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The full fin assembly NpC  requires adding the terms from 

all fin panels.  Thus, for 3N , 
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 (41) 

Two comments are in order.  Due to root and tip effects, 

NC  will vary across the fin span.  A good first approximation 

is to take the full, 3D NC  without body upwash, and average 

it over the span.  Second, the derivative DC  can be estimated 

from wind tunnel measurements
17

.  Typically, 2.0DC , or 

so, in incompressible flow.  For fins with supersonic leading 
edges, the Ackeret result for airfoil wave drag should be used.  
The correction for sweep angle is based on infinite swept wing 
theory. 

APPENDIX II: CENTER OF MASS OFFSET MOMENT 

A second major source of nonlinear roll moment of offset 
center of mass.  This is sketched in Fig. 16 below 

 

Figure 16 - Roll moment due to Center of Mass Offset 

We easily find that the induced roll moment is 

 )sin( CGNLCG C
d

C  


  (42) 

The total nonlinear roll moment is then the sum of that due 
to nose vorticity and that due to CG offset, including statistical 
correlations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


